

Harrison Hot Springs Waterfront Flood Mitigation

Update to Council

December 9, 2025

Introductions Project Team

Presenters:

Daniel Maldoff, MEng, PEng Hydrotechnical Engineer, **NHC**

Graeme McAllister, PEng, MASc Senior Geotechnical Engineer, **Thurber** **Project Team:**

Northwest Hydraulic Consultants Hydrotechnical engineering (Prime Consultant)

Space2placeLandscape architecture

Thurber Engineering
Geotechnical engineering

Legacy EnvironmentalEnvironmental/permitting

Presentation Outline

HARRISON HOT SPRINGS

Naturally Refreshed

THURBER ENGINEERING LTD

- 1. Project overview
- 2. Council direction and current objectives
- 3. Dike design update

Project Overview Components

Wastewater Treatment Plant Road and Shoreline (Zones 1 and 2) – 0.6 km length

- Council has directed staff to proceed with design

Waterfront Dike (Zones 3, 4, 5, and 6) – 1.5 km length

- Design concepts under discussion

Regular Council Meeting, September 8, 2025

Motion carried:

THAT staff be directed to pursue a detailed design for a deployable dike system in Zones 3-6; and

THAT staff be directed to report back to Council at a future Committee of the Whole meeting regarding the financial implications, ability to deploy, storage and durability/longevity of a deployable dike system and any permanent features associated with the deployable dike.

Overview: Dike Performance Considerations

From 2015 Lower Mainland Dike Assessment:

- Crest Height
- Geometry
- Geotechnical
- Erosion Resistance
- Encroachments and Vegetation Management
- Appurtenant Structures
- Administrative Arrangements

Existing Dike Condition and Performance

Main concern: inadequate crest level

Upgrades contemplated in 1990s through Provincial Fraser River Flood Control Program

2015 Provincial Lower Mainland Dike Assessment

- Crest elevation rating: 2 out of 4
 "the dike does not meet minimum requirements"
- Overall condition rating: 2.63 out of 4

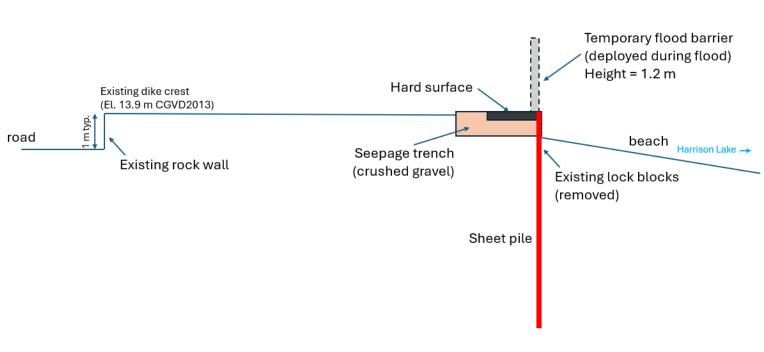
Limited geotechnical data available in 2015

- Current project included geotechnical investigations
 - → Seepage mitigation recommended for upgraded dike

A Regional Issue

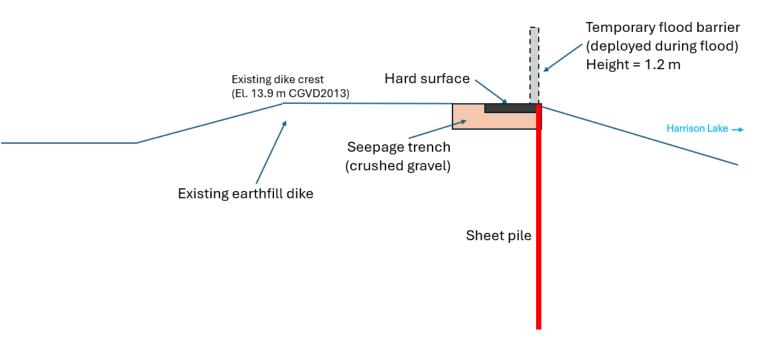
- Over 500 km of dikes in the Lower Mainland
 - Most built after 1948 flood and have not been tested by a large flood

- 2015 Lower Mainland Dike Assessment:
 - Crest height
 - 54% of dikes had crest below design flood level
 - Only 4% fully met crest level standards
 - Geotechnical
 - 22% of dikes had insufficient geotechnical information performance is unknown (Harrison Hot Springs Dike was in this category)
 - For dikes that could be assessed, about 1/3 had ratings of "poor" or "unacceptable" can be expected to fail due to a geotechnical problem before overtopping

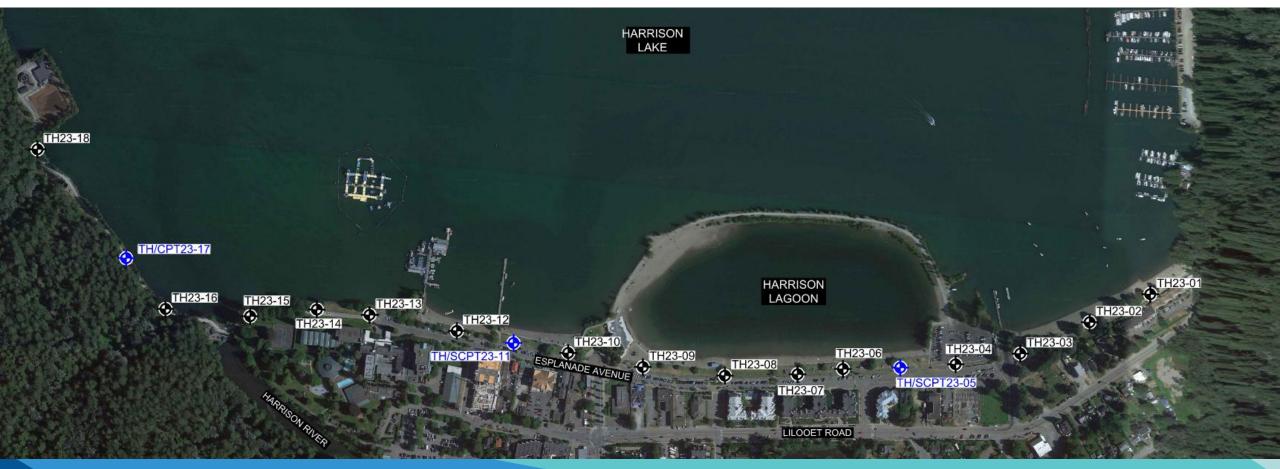

Proposed Design Approach

- Wastewater Treatment Plant Road and Shoreline (Zones 1 and 2)
 - Improve erosion protection
 - Raise embankment around wastewater treatment plant to El. 15.1 m
 - Upgrade road for access during and after the design flood
- Waterfront Dike (Zones 3, 4, 5, and 6)
 - Crest level to El. 15.1 m (+1.2 m) using deployable flood barrier
 - Mitigation of below-grade seepage concerns

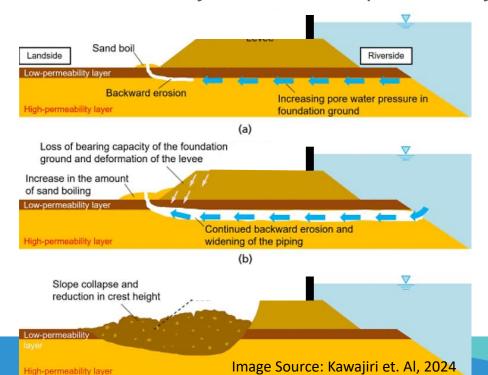
Dike Upgrades Preliminary Design Zone 4 (Commercial Waterfront) & Zone 5 (Lagoon)



Dike Upgrades Preliminary Design Zone 3 (Hot Springs Resort) & Zone 6 (Rendall Park)

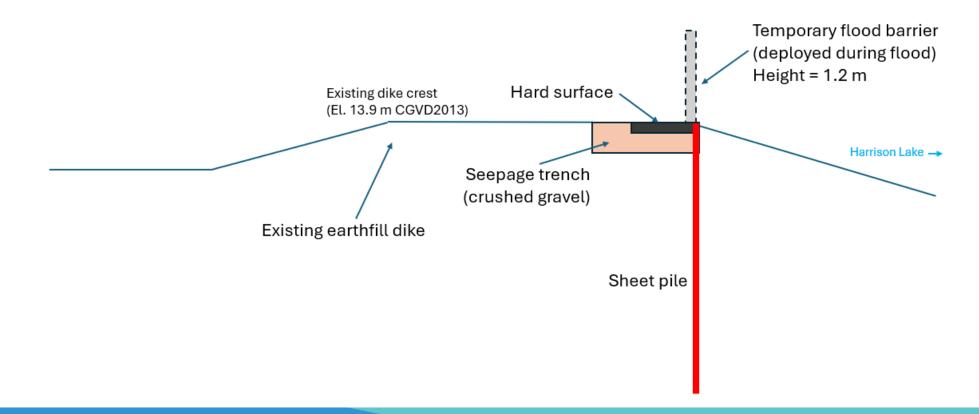


Seepage Mitigation – Preliminary Design


- Geotechnical Conditions
 - Soils typically include sand and silty sand with occasional silt and sand and gravel layers.

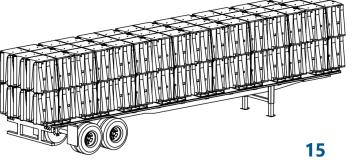
Seepage Mitigation – Preliminary Design

- Seepage Considerations
 - High water conditions during floods cause seepage forces through dikes
 - Excessive seepage forces can cause internal erosion or soil heave on the landside of the dike
 - Applies to both earth dikes and deployable flood walls
 - Fine sand and silty sand can be particularly susceptible to seepage forces



Seepage Mitigation – Preliminary Design

- The proposed design addresses seepage by including:
 - Below grade sheet pile cut off walls to extend the seepage path and reduce seepage force
 - Seepage trenches to control seepage where it exits the landside of the dike



Deployable Flood BarrierModular Water-Filled LDPE Barrier

- e.g. Muscle Wall
- 1.2 m high units, 0.6 m high extender available

Flood Protection Performance	HighGood precedent for use
Pre-Flood Deployment	 Can be deployed within 2-3 days Equipment: forklift or excavator with forks, and water source Requires a level surface
Post-flood Removal	Quickly demountable
Storage	 500 m² (23 m x 23 m) for 1.5 km length if single-stacked; less if double-stacked
Lifespan	ReusableLasts longer if stored out of sun
Cost	Moderate, relative to other options

Cost Implications

- \$11M in grant funding available for project
- High-level cost estimate*

Item	Cost, Unfactored	Cost, Including 20% Contingency
WWTP and road upgrades	\$3,800,000	\$4,500,000
Dike – geotechnical upgrades	\$3,100,000	\$3,700,000
Dike – deployable flood barrier	\$1,400,000	\$1,700,000
Grading and landscaping	\$750,000	\$900,000
TOTAL	\$9,100,000	\$10,800,000

- *Cost Assumptions and Limitations
- Includes engineering and environmental
- Preliminary, based on current design information

Thank you

Questions and Discussion